If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2+35y-36=0
a = 25; b = 35; c = -36;
Δ = b2-4ac
Δ = 352-4·25·(-36)
Δ = 4825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4825}=\sqrt{25*193}=\sqrt{25}*\sqrt{193}=5\sqrt{193}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5\sqrt{193}}{2*25}=\frac{-35-5\sqrt{193}}{50} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5\sqrt{193}}{2*25}=\frac{-35+5\sqrt{193}}{50} $
| x+x+3+2(x+3=69 | | x+x+3+2x+3=69 | | 6y-1/y-3=2 | | 3x+7=10x+7 | | {20}{x}=4 | | (2+3x)+x=50 | | |-x+3|/5=4 | | 2-18x+63=6-12x+15 | | |-x+3|/5=-4 | | 2-18x+63=6–12x+15 | | 1/9-((2x-7)/2)=1/3-((4x-5)/6) | | 1/9-(2x-7)/2=1/3-(4x-5)/6 | | 8x+5+4x-17=180 | | 8x+5=4x-17 | | 15=-b-2b | | -6x2^0.1x=-100 | | 21=2g+5g | | -32=-5b-3b | | 14=-5v-2v | | 35=4h+3h | | -6=-5e+3e | | -2=-c-c | | 6=3s-s | | (t+4)^2-13(t+4)+42=0. | | -12=-5c+2c | | -35=-5t-2t | | 3x=4,86 | | 10x=8=98 | | 8=I-5i | | -15=-2j-j | | -7=2u+5u | | 8x(5+7)=40+ |